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Abstract

We present and analyze an active learning
algorithm that is theoretically sound in an
agnostic setting, empirically e�ective, and
as e�cient as standard online learning algo-
rithms. This allows us to soundly and ef-
fectively optimize the explore/exploit trade-
o� in active learning at a scale of 106 exam-
ples/second.

The present work is primarily based
on (Beygelzimer et al., 2010) and (Karam-
patziakis & Langford, 2011).

1. Introduction

In active learning, a learner is given access to unlabeled
data and is allowed to adaptively choose which ones
to label. This learning model is motivated by applica-
tions in which the cost of labeling data is high relative
to that of collecting the unlabeled data itself. There-
fore, the hope is that the active learner only needs to
query the labels of a small number of the unlabeled
data, and otherwise perform as well as a fully super-
vised learner. In this work, we are interested in agnos-
tic active learning algorithms for binary classi�cation
that are provably consistent, i.e. that converge to an
optimal hypothesis in a given hypothesis class.
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One technique that has proved theoretically pro�table
is to maintain a candidate set of hypotheses (some-
times called a version space), and to query the label
of a point only if there is disagreement within this
set about how to label the point. The criteria for
membership in this candidate set needs to be care-
fully de�ned so that an optimal hypothesis is always
included, but otherwise this set can be quickly whit-
tled down as more labels are queried. This technique
is perhaps most readily understood in the noise-free
setting (Cohn et al., 1994; Dasgupta, 2005), and it
can be extended to noisy settings by using con�dence
bounds (Balcan et al., 2006; Dasgupta et al., 2007;
Beygelzimer et al., 2009; Hanneke, 2009; Koltchinskii,
2010).

The version space approach unfortunately has its share
of signi�cant drawbacks. The �rst is computational in-
tractability: maintaining a version space and guaran-
teeing that only hypotheses from this set are returned
is di�cult for linear predictors and appears intractable
for interesting nonlinear predictors such as neural nets
and decision trees (Cohn et al., 1994). Another draw-
back of the approach is its brittleness: a single mishap
(due to, say, modeling failures or computational ap-
proximations) might cause the learner to exclude the
best hypothesis from the version space forever; this is
an ungraceful failure mode that is not easy to correct.
A third drawback is related to sample re-usability: if
(labeled) data is collected using a version space-based
active learning algorithm, and we later decide to use a
di�erent algorithm or hypothesis class, then the earlier
data may not be freely re-used because its collection
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process is inherently biased.

Here, we develop a new strategy addressing all of the
above problems given an oracle that returns an empir-
ical risk minimizing (ERM) hypothesis. As this oracle
matches our abstraction of many supervised learning
algorithms, we believe active learning algorithms built
in this way are immediately and widely applicable.

Our approach instantiates the importance weighted ac-
tive learning framework of (Beygelzimer et al., 2009)
using a rejection threshold similar to the algorithm of
(Dasgupta et al., 2007) which only accesses hypotheses
via a supervised learning oracle. However, the oracle
we require is simpler and avoids strict adherence to a
candidate set of hypotheses. Moreover, our algorithm
creates an importance weighted sample that allows for
unbiased risk estimation, even for hypotheses from a
class di�erent from the one employed by the active
learner. This is in sharp contrast to many previous al-
gorithms (e.g., (Cohn et al., 1994; Balcan et al., 2006;
2007; Dasgupta et al., 2007; Hanneke, 2009; Koltchin-
skii, 2010)) that create heavily biased data sets. We
prove that our algorithm is always consistent and has
an improved label complexity over passive learning in
cases previously studied in the literature.

We also describe two practical instantiations of our
algorithm, where the required ERM oracle is approx-
imated using e�cient supervised learners, and report
on some experimental results. The �rst is based on
the decision tree learning procedure J48 from Weka
v3.6.2 (Hall et al., 2009). The second is based on the
online learning software Vowpal Wabbit (VW) (Lang-
ford et al., 2007) using the importance weight-aware
updates from (Karampatziakis & Langford, 2011).
The specialized updates are essential for achieving
good performance when using online learning algo-
rithms like VW in the context of importance weighted
active learning. This online active learning algorithm
runs at the same speed as simple online learning, im-
plying that the explore/exploit tradeo� in active learn-
ing can be e�ectively optimized at rates of 106 exam-
ples/second.

2. Preliminaries

2.1. Learning Model

Let D be a distribution over X × Y where X is
the input space and Y = {±1} are the labels. Let
(X,Y ) ∈ X × Y be a pair of random variables with
joint distribution D. An active learner receives a se-
quence (X1, Y1), (X2, Y2), . . . of i.i.d. copies of (X,Y ),
with the label Yi hidden unless it is explicitly queried.
We use the shorthand a1:k to denote a sequence

(a1, a2, . . . , ak) (so k = 0 correspond to the empty se-
quence).

Let H be a set of hypotheses mapping from X to Y.
For simplicity, we assume H is �nite but does not
completely agree on any single x ∈ X (i.e., ∀x ∈
X ,∃h, h′ ∈ H such that h(x) 6= h′(x)). This keeps
the focus on the relevant aspects of active learning
that di�er from passive learning. The error of a hy-
pothesis h : X → Y is err(h) := Pr(h(X) 6= Y ). Let
h∗ := arg min{err(h) : h ∈ H} be a hypothesis of min-
imum error in H. The goal of the active learner is
to return a hypothesis h ∈ H with error err(h) not
much more than err(h∗), using as few label queries as
possible.

2.2. Importance Weighted Active Learning

In the importance weighted active learning (IWAL)
framework of (Beygelzimer et al., 2009), an active
learner looks at the unlabeled data X1, X2, . . . one at
a time. After each new point Xi, the learner deter-
mines a probability Pi ∈ [0, 1]. Then a coin with bias
Pi is �ipped, and the label Yi is queried if and only
if the coin comes up heads. The query probability Pi
can depend on all previous unlabeled examples X1:i−1,
any previously queried labels, any past coin �ips, and
the current unlabeled point Xi.

Formally, an IWAL algorithm speci�es a rejection
threshold function p : (X ×Y×{0, 1})∗×X → [0, 1] for
determining these query probabilities. Let Qi ∈ {0, 1}
be a random variable conditionally independent of the
current label Yi,

Qi ⊥⊥ Yi | X1:i, Y1:i−1, Q1:i−1

and with conditional expectation

E[Qi|Z1:i−1, Xi] = Pi := p(Z1:i−1, Xi).

where Zj := (Xj , Yj , Qj). That is, Qi indicates if the
label Yi is queried (the outcome of the coin toss). Al-
though the notation does not explicitly suggest this,
the query probability Pi = p(Z1:i−1, Xi) is allowed to
explicitly depend on a label Yj (j < i) if and only if it
has been queried (Qj = 1).

2.3. Importance Weighted Estimators

We �rst review some standard facts about the im-
portance weighting technique. For a function f :
X ×Y → R, de�ne the importance weighted estimator
of E[f(X,Y )] from Z1:n ∈ (X × Y × {0, 1})n to be

f̂(Z1:n) :=
1

n

n∑
i=1

Qi
Pi
· f(Xi, Yi).
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Note that this quantity depends on a label Yi only if it
has been queried (i.e., only if Qi = 1; it also depends
on Xi only if Qi = 1). Our rejection threshold will be
based on a specialization of this estimator, speci�cally
the importance weighted empirical error of a hypoth-
esis h

err(h, Z1:n) :=
1

n

n∑
i=1

Qi
Pi
· 1[h(Xi) 6= Yi].

In the notation of Algorithm 1, this is equivalent to

err(h, Sn) :=
1

n

∑
(Xi,Yi,1/Pi)∈Sn

1

Pi
· 1[h(Xi) 6= Yi] (1)

where Sn ⊆ X × Y × R is the importance weighted
sample collected by the algorithm.

A basic property of these estimators is unbi-
asedness: E[f̂(Z1:n)] = (1/n)

∑n
i=1 E[E[(Qi/Pi) ·

f(Xi, Yi) | X1:i, Y1:i, Q1:i−1]] = (1/n)
∑n
i=1 E[(Pi/Pi) ·

f(Xi, Yi)] = E[f(X,Y )]. So, for example, the impor-
tance weighted empirical error of a hypothesis h is an
unbiased estimator of its true error err(h). This holds
for any choice of the rejection threshold that guaran-
tees Pi > 0.

3. Algorithm

First, we state a deviation bound for the importance
weighted error of hypotheses in a �nite hypothesis class
H that holds for all n ≥ 1. The form of the bound
motivates certain algorithmic choices to be described
below.

Lemma 1. Pick any δ ∈ (0, 1). For all n ≥ 1, let

εn :=
16 log(2(3 + n log2 n)n(n+ 1)|H|/δ)

n

= O

(
log(n|H|/δ)

n

)
. (3)

Let (Z1, Z2, . . .) ∈ (X × Y × {0, 1})∗ be the sequence
of random variables speci�ed in Section 2.2 using a
rejection threshold p : (X × Y × {0, 1})∗ × X → [0, 1]
that satis�es p(z1:n, x) ≥ 1/nn for all (z1:n, x) ∈ (X ×
Y × {0, 1})n ×X and all n ≥ 1.

The following holds with probability at least 1− δ. For
all n ≥ 1 and all h ∈ H,

|(err(h, Z1:n)− err(h∗, Z1:n))− (err(h)− err(h∗))|

≤
√

εn
Pmin,n(h)

+
εn

Pmin,n(h)
(4)

where Pmin,n(h) = min{Pi : 1 ≤ i ≤ n ∧ h(Xi) 6=
h∗(Xi)} ∪ {1} .

Algorithm 1

Note: see Eq. (1) for the de�nition of err (impor-
tance weighted error), and Section 3 for the de�ni-
tions of C0, c1, and c2.
Initialize: S0 := ∅.
For k = 1, 2, . . . , n:

1. Obtain unlabeled data point Xk.

2. Let

hk := arg min{err(h, Sk−1) : h ∈ H}, and
h′k := arg min{err(h, Sk−1) : h ∈ H ∧
h(Xk) 6= hk(Xk)}.

Let Gk := err(h′k, Sk−1)− err(hk, Sk−1), and

Pk :=

{
1 if Gk ≤

√
C0 log k
k−1 + C0 log k

k−1
s otherwise

where s ∈ (0, 1) is the positive solution to the
equation

Gk =

(
c1√
s
− c1 + 1

)
·
√
C0 log k

k − 1

+
(c2
s
− c2 + 1

)
· C0 log k

k − 1
. (2)

3. Toss a biased coin with Pr(heads) = Pk.

If heads, then query Yk, and let Sk :=
Sk−1 ∪ {(Xk, Yk, 1/Pk)}.
Else, let Sk := Sk−1.

Return: hn+1 := arg min{err(h, Sn) : h ∈ H}.

Figure 1. Algorithm for importance weighted active learn-
ing with an error minimization oracle.
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We let C0 = O(log(|H|/δ)) ≥ 2 be a quantity such
that εn (as de�ned in Eq. (3)) is bounded as εn ≤
C0 ·log(n+1)/n. The absolute constants c1 := 5+2

√
2

and c2 := 5 are used in the description of the rejection
threshold and its analysis.

Our proposed algorithm is shown in Figure 1. The
rejection threshold (Step 2) is based on the deviation
bound from Lemma 1. First, the importance weighted
error minimizing hypothesis hk and the �alternative�
hypothesis h′k are found. Note that both optimiza-
tions are over the entire hypothesis class H (with h′k
only being required to disagree with hk on xk)�this is
a key aspect where our algorithm di�ers from previous
approaches. The di�erence in importance weighted er-
rors Gk of the two hypotheses is then computed. If
Gk ≤

√
(C0 log k)/(k − 1) + (C0 log k)/(k − 1), then

the query probability Pk is set to 1. Otherwise, Pk is
set to the positive solution s to the quadratic equation
in Eq. (2). The functional form of Pk is roughly

min

{
1, O

(
1

G2
k

+
1

Gk

)
· C0 log k

k − 1

}
.

It can be checked that Pk ∈ (0, 1] and that Pk is
non-increasing with Gk. It is also useful to note that
(log k)/(k− 1) is monotonically decreasing with k ≥ 1
(we use the convention log(1)/0 =∞).

In order to apply Lemma 1 with our rejection thresh-
old, we need to establish the (very crude) bound
Pk ≥ 1/kk for all k.

Lemma 2. The rejection threshold of Algorithm 1
satis�es p(z1:n−1, x) ≥ 1/nn for all n ≥ 1 and all
(z1:n−1, x) ∈ (X × Y × {0, 1})n−1 ×X .

Note that this is a worst-case bound; our analysis
shows that the probabilities Pk are more like 1/poly(k)
in the typical case.

4. Analysis

4.1. Consistency

We �rst prove a consistency guarantee for Algorithm
1 that bounds the generalization error of the impor-
tance weighted empirical error minimizer. The proof
actually establishes a lower bound on the query prob-
abilities Pi ≥ 1/2 for Xi such that hn(Xi) 6= h∗(Xi).
This o�ers an intuitive characterization of the weight-
ing landscape induced by the importance weights 1/Pi.

Theorem 1. The following holds with probability at
least 1− δ. For any n ≥ 1,

err(hn) ≤ err(h∗) +

√
2C0 log n

n− 1
+

2C0 log n

n− 1
.

Therefore, the �nal hypothesis returned by Algorithm
1 after seeing n unlabeled data has roughly the same
error bound as a hypothesis returned by a standard
passive learner with n labeled data.

4.2. Label Complexity Analysis

We now bound the number of labels requested by Al-
gorithm 1 after n iterations. We do so by bound-
ing the probability of querying the label Yn, which in
turn gives a bound on the expected number of labels
queried. The key to the proof is in relating empirical
error di�erences and their deviations to the probabil-
ity of querying a label. This is mediated through the
disagreement coe�cient, a quantity �rst used by (Han-
neke, 2007) for analyzing the label complexity of the
A2 algorithm of (Balcan et al., 2006). The disagree-
ment coe�cient θ := θ(h∗,H,D) is de�ned as

θ(h∗,H,D) := sup

{
Pr(X ∈ DIS(h∗, r))

r
: r > 0

}
where

DIS(h∗, r) := {x ∈ X : ∃h′ ∈ H such that

Pr(h∗(X) 6= h′(X)) ≤ r and h∗(x) 6= h′(x)}

(the disagreement region around h∗ at radius r). This
quantity is bounded for many learning problems stud-
ied in the literature; see (Hanneke, 2007; 2009; Fried-
man, 2009; Wang, 2009) for more discussion. Note
that the supremum can instead be taken over r > ε
if the target excess error is ε, which allows for a more
detailed analysis.

Theorem 2. With probability at least 1 − δ, the ex-
pected number of labels queried by Algorithm 1 after n
iterations is at most

1+θ·2 err(h∗)·(n−1)+O
(
θ ·
√
C0n log n+ θ · C0 log3 n

)
.

The bound is dominated by a linear term scaled
by err(h∗), plus a sublinear term. The linear term
err(h∗) · n is unavoidable in the worst case, as evi-
dent from label complexity lower bounds (Kääriäinen,
2006; Beygelzimer et al., 2009). When err(h∗) is neg-
ligible (e.g., the data is separable) and θ is bounded
(as is the case for many problems studied in the liter-
ature (Hanneke, 2007)), then the bound represents a
polynomial label complexity improvement over super-
vised learning, similar to that achieved by the version
space algorithm from (Beygelzimer et al., 2009).

5. Experiments

Although agnostic learning is typically intractable in
the worst case, empirical risk minimization can serve
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as a useful abstraction for many practical supervised
learning algorithms in non-worst case scenarios. With
this in mind, we experimentally evaluated two practi-
cal instantiations of Algorithm 1.

5.1. Decision tree learning experiments

Our �rst instantiation uses a popular algorithm for
learning decision trees in place of the required ERM
oracle. Speci�cally, we use the J48 algorithm from
Weka v3.6.2 (Hall et al., 2009) (with default parame-
ters) to select the hypothesis hk in each round k; to
produce the �alternative� hypothesis h′k, we just mod-
ify the decision tree hk by changing the label of the
node used for predicting on xk. Both of these pro-
cedures are clearly heuristic, but they are similar in
spirit to the required optimizations. We set C0 = 8
and c1 = c2 = 1�these can be regarded as tuning pa-
rameters, with C0 controlling the aggressiveness of the
rejection threshold. We did not perform parameter
tuning with active learning although the importance
weighting approach developed here could potentially
be used for that.

5.1.1. Data Sets

We constructed two binary classi�cation tasks using
MNIST and KDDCUP99 data sets. For MNIST, we
randomly chose 4000 training 3s and 5s for training
(using the 3s as the positive class), and used all of the
1902 testing 3s and 5s for testing. For KDDCUP99,
we randomly chose 5000 examples for training, and
another 5000 for testing. In both cases, we reduced
the dimension of the data to 25 using PCA.

To demonstrate the versatility of our algorithm, we
also conducted a multi-class classi�cation experiment
using the entire MNIST data set (all ten digits, so
60000 training data and 10000 testing data). This re-
quired modifying how h′k is selected: we force h

′
k(xk) 6=

hk(xk) by changing the label of the prediction node for
xk to the next best label. We used PCA to reduce the
dimension to 40.

5.1.2. Results

We examined the test error as a function of (i) the
number of unlabeled data seen, and (ii) the number of
labels queried. We compared the performance of the
active learner described above to a passive learner (one
that queries every label, so (i) and (ii) are the same)
using J48 with default parameters.

In all three cases, the test errors as a function of the
number of unlabeled data were roughly the same for
both the active and passive learners. This agrees with
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Figure 2. Test errors as a function of the number of labels
queried for decision tree learning experiments.
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the consistency guarantee from Theorem 1. We note
that this is a basic property not satis�ed by many ac-
tive learning algorithms (this issue is discussed further
in (Dasgupta & Hsu, 2008)).

In terms of test error as a function of the number of la-
bels queried (Figure 2), the active learner had minimal
improvement over the passive learner on the binary
MNIST task, but a substantial improvement over the
passive learner on the KDDCUP99 task (even at small
numbers of label queries). For the multi-class MNIST
task, the active learner had a moderate improvement
over the passive learner. Note that KDDCUP99 is far
less noisy (more separable) than MNIST 3s vs 5s task,
so the results are in line with the label complexity be-
havior suggested by Theorem 2, which states that the
label complexity improvement may scale with the er-
ror of the optimal hypothesis. Also, the results from
MNIST tasks suggest that the active learner may re-
quire an initial random sampling phase during which it
is equivalent to the passive learner, and the advantage
manifests itself after this phase. This again is con-
sistent with the analysis (also see (Hanneke, 2007)),
as the disagreement coe�cient can be large at initial
scales, yet much smaller as the number of (unlabeled)
data increases and the scale becomes �ner.

5.2. Online learning experiments

Our second instantiation combines Algorithm 1 with
an online gradient descent algorithm for learning lin-
ear predictors, as implemented in Vowpal Wabbit
(VW) (Langford et al., 2007). In each iteration, the
algorithm computes Gk based on the current weight
vector wk ∈ Rd and the new unlabeled data point
xk ∈ Rd. This determines the query probability Pk,
and the weight vector wk is updated to wk+1 if the
label is queried (and otherwise wk+1 := wk).

Because the importance weights 1/Pk may be large,
naïve approaches for dealing with importance weights
can completely break down. For example, an up-
date that simply multiplies the gradient of the loss
with the importance weight and subtract it from the
weight vector would create unecessarily large updates
that shift the weights far beyond what is necessary
to achieve a small loss. Instead, we use updates that
take into account the curvature of the loss `(ŷ, y) and
are directly motivated from minimizing importance
weighted losses.

In our experiments, we use two such updates. The �rst
are implicit updates which update the weight vector as

wk+1 := argmin
1

2
||w − wk||2 + ηkik`(w

>xk, yk)

where ηk and ik are, respectively, the learning rate and
importance weight at time k. The second are impor-
tance invariant updates (Karampatziakis & Langford,
2011):

wk+1 := wk − s(w>k xk, ik)xk

where s(p, i) is a scaling function that comes from the
solution of this ODE

∂s

∂i
= ηk

∂`(p, yk)

∂p

∣∣∣∣
p=w>

k xk−s(w>
k xk,i)||xk||2

s(p, 0) = 0

(5)

where `(p, y) is the loss for predicting p when the label
is y. It has a closed form solution for many ordinary
loss functions such as squared loss and logistic loss,
and coincides with implicit updates for piecewise linear
losses such as hinge loss. Importantly, it satis�es an
invariance property: updating twice with importance
weight i has the same e�ect as updating once with
weight 2i (i.e., s(p, 2i) = s(p, i) + s(p− s(p, i), i)).

To get a handle on Gk we estimate k ·Gk by the impor-
tance weight that the example would need to have in
order for an update with the alternative hypothesis's
prefered label to cause the classi�cation of the example
to become the alternative label. Speci�cally, for binary
problems with Y = {−1, 1}, let ŷk = sign(w>k xk) and
hence the alternative label is ya = −ŷk. In the case of
importance invariant updates, we want an importance
weight i such that (wk − s(w>k xk, i)xk)>xk = 0 where
s(w>k xk, i) is computed using ya in place of yk. Since s
satis�es (5), by separating variables, integrating both
sides and making use of the initial condition, we get
that

i =
1

ηk

∫ w>
k xk

||xk||2

0

dt
∂`(p,ya)
∂p

∣∣∣
p=w>

k xk−t||xk||2

. (6)

Implicit updates also yield simple closed form solu-
tions for the required importance weights. As these
estimates and the updates for minimizing an impor-
tance weighted loss have simple forms, we obtain a
very fast active learning algorithm.

5.2.1. Data Sets

We present empirical results on four text classi�ca-
tion datasets: `rcv1' is a modi�ed version (Langford
et al., 2007) of RCV1 (Lewis et al., 2004), `astro'
is from (Joachims, 2006), `spam' was created from
the TREC 2005 spam public corpora, and `webspam'
is from the PASCAL large scale learning challenge.
In all experiments, we did a single pass through the
training set and optimized squared loss. We report
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Figure 3. Test errors as a function of the number of labels
queried for online learning experiments.

the error on the test set. We search over learning

rates of the form ηk = µ
‖xk‖2

(
κ
k+κ

)p
with (µ, κ, p) ∈

{2i}10i=0 × {10i}8i=0 × {0.5, 1}. Since learning rates de-
cay, (6) implies that the importance weights will grow
as ∼ η−1k , so between Ω(

√
k) and O(k).

5.2.2. Results

In Figure 3 we summarize our results. Each combina-
tion of learning rate schedule and setting of the param-
eter C0 in Algorithm 1 (C0 ∈ {10−8, 10−7, . . . , 101}) is
an experiment that can be represented in the graph
by a point whose x-coordinate is the fraction of labels
queried by the active learning algorithm and whose
y-coordinate is the test error of the learned hypothe-
sis. To summarize this set of points, the �gures plot
part of its convex hull. The points on the convex
hull (sometimes called a Pareto frontier) are experi-
ments which represent optimal tradeo�s between gen-
eralization and label complexity, for some setting of
this tradeo�. When a curve stops sooner than the size
of the dataset it means that there were no experiments
in which using more queries gave better generalization.
We have also included the results from a typical good
run of a passive learner. The graphs show very con-
vincingly the value of having an update that handles
importance weights correctly. Doing so yields better
generalization and lower label complexity, than those
attainable by multiplying the gradient with the impor-
tance weight. In fact, linearization of the loss can make
active learning need more labels than passive learning.

6. Conclusion

This paper provides a new active learning algorithm
based on error minimization oracles, a departure from
the version space approach adopted by previous works.
The algorithm we introduce here motivates compu-
tationally tractable and e�ective methods for active
learning with many classi�er training algorithms. The
overall algorithmic template applies to any training
algorithm that (i) operates by approximate error min-
imization and (ii) for which the cost of switching a
class prediction (as measured by example errors) can
be estimated. Indeed, we have demonstrated the em-
pirical e�ectiveness of two instantiations of the tem-
plate using decision trees and linear predictors. Even
when (i) and (ii) only hold in an approximate or heuris-
tic sense, the created active learning algorithm will be
�safe� in the sense that it will eventually converge to
the same solution as a passive supervised learning al-
gorithm. Consequently, we believe this approach can
be widely used to reduce the cost of labeling in situa-
tions where labeling is expensive.
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